	Part A: Introduction					
Pr Co	ogram: Diploma ourse	Class: B.Sc.	Sen	nester-III	Session: 2023-2024	
1	Course Code			PSCC-0	03T	
2	Course Title	THERMA	L PH	YSICS AN MECHAN	ND STATISTICAL ICS	
3	Course Type			Theor	у	
4	Pre-requisite (if any)			As Per No	orms	
6	Course Learning.	At the end of this c	ourse	e, the stude	nts will be able	
	Outcomes (CLO)	1. Learn the bas	sic co	ncepts of th	nermodynamics.	
		2. The first an	d the	e second l	aw of thermodynamics, the	
		concept of	entro	py and th	ne associated theorems, the	
		thermodynan	nic	potentials	s and their physical	
		interpretations.				
	3. They are also expected to learn Maxwell's thermodynamic relations.					
		4. Know the fu	undan	nentals of	the kinetic theory of gases,	
		Maxwell-Bol	ltzma	nn		
		distribution 1	aw, e	quipartition	n of energies, mean free path	
		of molecular collisions, viscosity, thermal conductivity,				
		diffusion and Brownian motion.				
7	Credit Value	Theory 03				
8	Total Marks	Max. Marks: 75 Min Passing Marks:25				

	Part-B Content of Course					
	Total Hours -45					
Unit	Topics	No. of Lectures				
	Laws of Thermodynamics: Thermodynamic Description of					
	system: Zeroth Law of thermodynamics and temperature. First law	12				
Т	and internal energy, conversion of heat into work, Various	12				
1	Thermodynamical Processes, Applications of First Law: General					
	Relation between CP and CV, Work Done during Isothermal and					
	Adiabatic Processes, Compressibility and Expansion Coefficient,					
	Reversible and irreversible processes, Second law and Entropy,					
	Carnot's cycle & theorem, Entropy changes in reversible &					
	irreversible processes, Entropy-temperature diagrams, Third law					
	of thermodynamics, Unattainability of absolute zero.					
	Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and					
	Internal Energy functions, Maxwell's relations and applications -					
	Joule-Thompson Effect, Clausius-Clapeyron Equation,					
	Expression for $(CP - CV)$, CP/CV , TdS equations.					
II	Kinetic Theory of Gases: Derivation of Maxwell's law of	11				
	distribution of velocities and its experimental verification, Mean					
	free path (Zeroth Order), Transport Phenomena: Viscosity,					
	Conduction and Diffusion (for vertical case), Law of equipartition					
	of energy (no derivation) and its applications to specific heat of					
	gases; mono-atomic and diatomic gases					
III	Theory of Radiation: Blackbody radiation, Spectral distribution,	11				
	Concept of Energy Density, Derivation of Planck's law, Deduction					
	of Wien's distribution law, Rayleigh-Jeans Law, Stefan					
	Boltzmann Law and Wien's displacement law from Planck's law.					
IV	Statistical Mechanics: Phase space, Macro state and Microstate,	11				
	Entropy and Thermodynamic probability, Maxwell-Boltzmann					
	law - distribution of velocity - Quantum statistics - Fermi-Dirac					
	distribution law - electron gas - Bose-Einstein distribution law -					

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
- Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
- Heat and Thermodynamics, M.W.Zemasky and R. Dittman, 1981, McGraw Hill
- Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears and G.L. Salinger. 1988, Narosa
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. chand Publications.

Part D: Assessment and EvaluationSuggested Continuous Evaluation Methods:Maximum Marks: 75Marks: 75Continuous Comprehensive Evaluation (CCE): 2 Internal and Assignment-15 MarksSemester Exam (SE): 60 MarksSemester Exam (SE): 60 MarksInternal Assessment:ContinuousClass Test-02Continuous1 Assignment/PresentationComprehensiveTotal Marks: 15Evaluation (CCE)Total Marks: 75

	Part A:						
Pr	ogram: Diploma	Class: B.Sc.	Sem	ester-IV	Session: 2023-2024		
	Course Code			PSCC-0	MT		
	Course Coue		**/ * */				
2	Course Title		WAV	ES AND	OPTICS		
3	Course Type			Theor	y		
4	Pre-requisite (if any)			As Per N	orms		
6	Course	At the end of this	course,	, the stude	nts will be able		
	Outcomes (CLO)	1. Solve wave ed	quation	and un	derstand the significance of		
		transverse wave	s				
		2. Acquire skills	2. Acquire skills to identify and apply formulas of optics and				
		wave physics	wave physics				
		3. Understand the properties of light like interference, diffraction,					
		and polarization					
		4. Understand the	applic	ations of	interference in the design and		
		working of interferometers.					
		5. Understand the resolving power of grating					
		6. Get knowledge about laser and its application.					
7	Credit Value	Theory 03	Theory 03				
8	Total Marks	Max. Marks: 75		Min Pass	ing Marks:25		

	Part-B Content of Course	
	Total Hours -45	
Unit	Topics	No. of Lectures
	Waves in Medium: Speed of transverse waves on uniform string,	
	speed of longitudinal waves in a fluid, energy density and energy	12
т	transmission in waves. Group velocity and phase velocity and the	
1	relationship between them.	
	Interference: Interference: Division of amplitude and division of	
	wave-front. Young's Double Shit experiment. Fresnel's Biprism.	
	Phase change on reflection: Stokes's treatment. Interference in	
	Thin Films: parallel and wedge-shaped films. Fringes of equal	
	inclination (Haidinger Fringes);	
	Fringes of equal thickness (Fizeau Fringes). Newton's Rings:	
	measurement of wavelength and refractive index. Michelson's	
	Interferometer: Formation of fringes, Determination of	
	wavelength, Wavelength difference.	
II	Diffraction: Fresnel Diffraction: Half-period zones. Zone plate.	11
	Fresnel diffraction pattern at a straight edge, at a slit and at a wire	
	using half-period zone analysis. Fraunhofer diffraction: Single slit,	
	Double slit, Multiple slits & Plane Diffraction Grating, Resolving	
	Power of Grating.	
III	Polarization: Polarized light and its mathematical representation,	11
	Production of polarized light by reflection, refraction and	
	scattering. Polarization by double refraction and Huygen's theory,	
	Nicol prism, production and analysis of circularly and elliptically	
	polarized light. Optical activity and Fresnel theory. Laurent's Hals	
	shade Polarimeter and Bi-Quartz Polarimeter	
IV	LASER: Basic properties of LASERs, coherence length and	11

coherence time, spatial coherence of a source, Einstein's A and B coefficients, Spontaneous and induced emissions, conditions for laser action, and population inversion. Types of Laser: Ruby, He-Ne Laser and Semiconductor Laser, Application of Laser in Communication and Holography.

Part C - Learning Resource

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- Fundamentals of Optics, FAJenkinsandHEWhite, 1976,McGraw-Hill
- 2. Principles of Optics, B.K.Mathur, 1995, GopalPrinting
- 3. Fundamentals of Optics, H.R.GulatiandD.R. Khanna, 1991, S.ChandPublication
- 4. University Physics. FWSears, MWZemanskyandHDYoung 13/e, 1986.Addison-Wesl
- 5. Physical Optics, A.K. Ghatak
- 6. Berkely Physics Course: Vol.-III, 'Waves and Oscillations'

Part D: Assessment and Evaluation

Suggested Continuous Evaluation Methods:

Maximum Marks: 75

Continuous Comprehensive Evaluation (CCE): 2 Internal and Assignment-15 Marks Semester Exam (SE): 60 Marks

Internal Assessment:	Class Test-02	
Continuous	1 Assignment/Presentation	
Comprehensive		Total Marks: 15
Evaluation (CCE)		
		Total Marks: 75

	Part A: Introduction						
Program: Diploma Course		Class: B.Sc.	Semester-III & IV Session: 2023-2024				
1	Course Code		PSCC-003P & 004P				
2	Course Title	THERMA	THERMAL PHYSICS AND STATISTICAL MECHANICS				
			WAVES AND OPTICS				
3	Course Type		Practical				
4	Pre-requisite (if any)		As Per Norms				
6	Course	Expected Outcomes	S				
	Outcomes (CLO)	 Students able to get working knowledge of laws and methods of thermodynamics and elementary statistical mechanics and to use this knowledge students can explore various application related to physics of condensed matter. Students experience experimental evidence of laws of wave optics and how light has wave nature is confirmed through experiment. 					
7	Credit Value	Practical 01+01=0)2				
8	Total Marks	Max. Marks: 25+25=50	Min Passing Marks:9+9				

Turt D content of course
Total Hours -15 +15
At least 14 experiments from the following.
1. To determine the thermal conductivity of a non-conducting material
by Lee's disc method.
2. To determine the specific rotation of sugar solution with the help of a
polarimeter.
3. To verify Newton's law of cooling.
4. To study the binomial distribution law of probability using 4 coins.
5. To determine the frequency of the electric generator by Melde's
experiment.
6. To determine the coefficient of thermal conductivity (k) by the rubber
tubing method.
7. To study the heat efficiency of an electric kettle with varying voltage.
8. To determine the frequency of A.C. mains using sonometer.
9. To determine the ratio of specific heat at constant pressure and
constant volume (Y=Cp/Cv) of air Clement and Desorme's method.
10. To study the variation of thermos-Emf of thermos coupled with the
Difference of Temperature of its Two Junctions.
11. To determine the refractive index of the material of the prism with
the help of a spectrometer.
12. To determine the refractive index of the material of Calcite/ Quartz
prism with the help of a spectrometer.
13. To determine the radius of curvature of a plano-convex lens by
Newton's circular ring method.
14. To find out the wavelength of the monochromatic light source with
the help of Newton's Ring.
15. To determine the wavelength of laser light by diffraction grating.

16. To determine the resolving power of a telescope.

17. To determine the resolving power of a plane diffraction grating.

18. To determine the wavelength of monochromatic light source by single slit diffraction.

19. To determine the dispersive power of the prism with the help of a spectrometer.

20. To determine the refractive index of ordinary and extra-ordinary rays for the calcite prism using spectrometer.

21. To determine the refractive index of water using laser light and photocell.

Part C - Learning Resource

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- Advanced Practical Physics for students, B.L. Flint & H. T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practical's, Michael Nelson and Jon M.Ogborn, 4thEdition, reprinted1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11* Edition, 2011, Kitab Mahal, NewDelhi.
- A Laboratory Manual of Physics for Undergraduate Classes, D.P.Khandelwal, 1985, Vani Publication.

Part D: Assessment and Evaluation

Suggested Continuous Evaluation Methods:

Maximum Marks: 25+25=50, Minimum Marks: 09+09=18

	Part A: Introduction					
Pr Co	ogram: Diploma ourse	Class: B.Sc.	Semester-III	Session: 2023-2024		
1	Course Code		PHYDSEC	C-001T		
2	Course Title	ELEC	TRONICS AN MECHAN	D QUANTUM ICS		
3	Course Type		Theor	'Y		
4	Pre-requisite (if any)		As Per N	orms		
6	Course Learning	At the end of	the course, the	student is expected to have an		
	Outcomes (CLO)	idea/concept	of the following	, ,		
		1. After an exposition of the inadequacies of classical				
		mechanics in explaining microscopic phenomena, quantum				
		theory formulation is introduced through Schrodinger				
		equation.				
		2. The interpretation of wave function of quantum particle and				
		probabilistic nature of its location and subtler points of				
		quantum phe	nomena are exp	osed to the student.		
		3. This course j	provides the fur	ndamental skills to understand		
		the basic of semiconductor and components.				
		4. To develop the understanding in Diode and Transistor.				
7	Credit Value	Theory 03				
8	Total Marks	Max. Marks: 75	Min Pass	ing Marks:25		

	Part-B Content of Course						
	Total Hours -45						
Unit	Topics	No. of Lectures					
	Semiconductor Devices						
	Semiconductor Diode: P and N type Semiconductor, Barrier	11					
т	formation in P-N junction Diode, Qualitative idea of current flow						
•	mechanism in forward and reverse bias Diode, P-N junction and						
	its Characteristic.						
	Half -wave and Full-wave Rectification: Half-wave Rectification	12					
	Full-wave rectification Bipolar junction transistors and	1 2					
	Amplifiers.						
	Bipolar junction transistors: p-n-p and n-p-n transistors,						
	Characteristics of CB, CE, and CC configurations, Active, cutoff						
	and saturation region.						
III	Quntum Mechanics:	11					
	Quntum Theory of Radiation, Characteristics of Photon, matter						
	wave, D'Broglie wave-length, concept of wave function,						
	Schrodinger equation, Stationary state.						
IV	Expectation value of quantum variables, transitions probability,	11					
	the free particle in box, Linear harmonic oscillator, Eigen values						
	and Eigen functions.						

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- Physics of Semiconductor Devices, S.M. Sze & K.K. Ng, 3rd Ed.2008, John Wiley & Sons
- Electronic devices and integrated circuits, A.K. Singh, 2011, PHI Learning Pvt. Ltd.
- Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan.
- Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
- Quantum Mechanics, R. Eisberg and R. Resnick, John Wiley & Sons.
- Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.

Part D: Assessment and Evaluation					
Suggested Continuous	Suggested Continuous Evaluation Methods:				
Maximum Marks: 75					
Continuous Comprehen	sive Evaluation (CCE): 2 Internal	and Assignment-15 Marks			
Semester Exam (SE): 6	0 Marks				
Internal Assessment: Class Test-02					
Continuous	1 Assignment/Presentation				
Comprehensive Total Marks: 15					
Evaluation (CCE)					
		Total Marks: 75			

	Part A: Introduction							
Program: Diploma Course			Class: B.Sc.	Sen	nester-IV	Session: 2023-2024		
1	Course Code		PHYDSEC-002T					
2	Course Title		ATOMIC	MO	LECULAH PHYSIC	R AND NUCLEAR		
3	Course Type				Theor	У		
4	Pre-requisite (if any)				As Per N	orms		
6	Course Learning	At	the end of this	course	, the stude	nts will be able		
	Outcomes (CLO)	1. Learn the ground state properties of a nucleus – the constituents						
		 Learn the concepts of packing fraction and binding energy, binding energy and binding energy graph 						
		 To develop an understanding of the atomic and molecular structure. 						
		4. To develop an understanding of the interaction of atomic and molecular systems with external homogeneous static electric and magnetic fields.						
7	Credit Value	Theory ()3						
	Total Marlza	May Marka 75 Min Dessing Marka 25						
0	TOTAL MIALKS		iax. iviaiks. 73	Max. Marks: 75 Min Passing Marks:25				

	Part-B Content of Course	
	Total Hours -45	
Unit	Topics	No. of Lectures
	Hydrogen Atom: Spectra of Hydrogen and explanation by Bohr's	
	model, Spectrum of Deuteron, Bohr's and Sommerfield's atomic	11
Ι	model, Spatial quantization, Concept of spin vector atomic model.	
II	Molecular spectra, Discrete set of electronic energies of	12
	molecules, pure vibrational spectra, transitions rule, pure	
	rotational spectra, transitions rules.	
	Raman effect: stokes and anti-stokes lines.	
III	Nucleus, Proton-electron theory, Angular momentum of nucleus,	11
	General properties of nucleus, mass defect and packing fraction,	
	nuclear binding energy, Binding energy curve.	
IV	Particle accelerator, Cyclotron, Frequency modulated cyclotron,	11
	Detection of charged particles, Wilson cloud chamber, Geiger	
	Muller counter.	

Part C - Learning Resource			
Text Books, Reference Books, Other Resources			
Suggested Readings:			
Text Books:			
Atomic and Nuclear Physics Vol. II" by Ghoshal			
Fundamentals in Nuclear Physics by Jean-Louis Basdevant and James Rich			
NUCLEAR PHYSICS" by D C Tayal			
Introduction to Nuclear and Particle Physics" by A Das and T Ferbel			

Part D: Assessment and Evaluation				
Suggested Continuous Evaluation Methods:				
Maximum Marks: 75				
Continuous Comprehen	sive Evaluation (CCE): 2 Internal	and Assignment-15 Marks		
Semester Exam (SE): 60 Marks				
Internal Assessment:	Class Test-02			
Continuous	1 Assignment/Presentation			
Comprehensive	Total Marks: 15			
Evaluation (CCE)				
		Total Marks: 75		

	Part A: Introduction				
Pr Co	ogram: Diploma ourse	Class: B.Sc.Semester-III & IVSession: 2023-2024			
1	Course Code	PHYDSEC-01P & 02P			
2	Course Title	LAB-1 &2 Electronics, Quantum Mechanics, Atomic, Molecular, and Nuclear Physics			
3	Course Type			Practical	
4	Pre-requisite (if any)	As Per Norms			
6	Course	Expected Outcomes			
	Outcomes (CLO)	• Students able to get Learn basic concepts of semiconductor			
		diodes, junction transistors and their applications to rectifier			
		through experiment.			
		• Learn basic concepts of Digital circuits viz: logic gates and			
		its various combinations through experiments.			
7	Credit Value	Practical 01+01=02			
8	Total Marks	Max. Marks: 25+25=50 Min Passing Marks:9+9			

	Part-B Content of Course				
	Total Hours -15 +15				
	At least 14 experiments from the following.				
Tentative	1. Specific resistance and energy gap of a semiconductor				
Practical	2. Study of half wave and full wave rectification.				
List	3. Characteristics of Zener diode.				
	4. Characteristics of tunnel diode.				
	5. Characteristics of JFET.				
	6. Characteristics of Transistors.				
	7. Study of regulated power supply.				
	8. Study of RC coupled amplifier.				
	9. Determination of Plank's constant.				
	10. Determination of e/m using Thomson's method.				
	11. Hall probe method for measurement of resistivity.				
	12. Digital Electronics – Verify logic Gates				
	13. Half and Full adder circuits				
	14. Verification of De-Morgan's Laws				
	15. Realization of NAND and NOR Gates using Diode and Transistors.				

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- B.Sc. Practical Physics by C.L.Arora
- Practical Physics by G.L.Squires, Cambridge University Press
- Advanced Practical Physics for Students by Worsnop and Flint
- Practical Physics by R.K.Shukla
- B.Sc. Practical Physics by Harnam Singh

Part D: Assessment and Evaluation

Suggested Continuous Evaluation Methods:

Maximum Marks: 25+25=50, Minimum Marks: 09+09=18

	Part A: Introduction				
Pr Co	ogram: Diploma ourse	Class: B.Sc.	Sem	ester-III	Session: 2023-2024
1	Course Code		PH	IYSEC-0)2T
2	Course Title	Elementary l	Physic	s and Me	asurements Part-
3	Course Type			Theory	
4	Pre-requisite (if any)	As Per Norms			
6	Course Learning. Outcomes (CLO)	 At the end of the course, the student is expected to have an idea/concept of the following, 1. Students learn to measure any body by using Vernier and Meter scale. 2. Students learn to measure volume, area of any cylinder or wire by using Screw Guage. 3. They are also learn the elementary knowledge of properties of matter, current electricity and Electrostatic 			
7	Credit Value	Theory 02			
8	Total Marks	Max. Marks: 50		Min Pass	ing Marks:17

	Part-B Content of Course			
	Total Hours -30			
Unit	Topics			
	Measurement			
	Measuring units. conversion to SI and CGS. Familiarization with	10		
Ι	meter scale, Vernier caliper, Screw gauge and their utility.			
	Measure the dimension of a solid block, volume of cylindrical			
	beaker/glass, diameter of a thin wire, thickness of metal sheet, etc.			
	Use of Sextant to measure height of buildings, mountains, etc.			
II	Properties of Matter	07		
	Types of force, Elasticity, Poisson's Ratio, Surface tension,			
	Viscosity, Stokes law, Ideal gas laws.			
III	Electrostatics	07		
	Charge, Coulomb's law, Electric field,, Field intensity, Electric			
	lines of force, Electric dipole, Electric potential, capacitors.			
IV	Current Electricity	06		
	Electric current, Resistance, and capacitance, electric cells,			
	Kirchhoff's law, potentiometer			

Part C - Learning Resource				
Text Books, Reference Books, Other Resources				
Suggested Readings:				
Text Books:				
 <u>https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXI/phy</u> 				
sics/kelm102.pdf				
• Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill				
Education				
• Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998,				
Benjamin Cummings.				
• Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008,				
Pearson Education				
• Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University				
Press.				
• Electricity and Magnetism, J.H.Fewkes & J.Yarwood. Vol. I, 1991,				
Oxford Univ. Press.				
• Unified Physics B.Sc. I year by R.P. Goyal				

Part D: Assessment and Evaluation				
Suggested Continuous Evaluation Methods:				
Maximum Marks: 50				
Continuous Comprehen	sive Evaluation (CCE): 2 Internal	and Assignment-10 Marks		
Semester Exam (SE): 40 Marks				
Internal Assessment:	Class Test-02			
Continuous	1 Assignment/Presentation			
Comprehensive Total Marks: 10				
Evaluation (CCE)				
		Total Marks: 50		

	Part A: Introduction				
Program: DiplomaClass: B.Sc.Semester-IVSession: 2023-2024CourseSession: 2023-2024			Session: 2023-2024		
1	Course Code	PHYSEC-003T			
2	Course Title	Elementary	Physics and M	Ieasurements Part-2	
3	Course Type		Theo	ry	
4	Pre-requisite (if any)	As Per Norms			
6	Course Learning. Outcomes (CLO)	 At the end of the course, the student is expected to have an idea/concept of the following, 1. Students understand how to use soldering iron. 2. Students learn to measure current and voltage by using Ammeter and voltmeter. 3. They also learn the elementary knowledge of the thermal effect of current, Magnetostatic, and time-varying fields. 			
7	Credit Value	Theory 02			
8	Total Marks	Max. Marks: 50	Min Pas	sing Marks:17	

	Part-B Content of Course			
	Total Hours -30			
Unit	Topics	No. of Lectures		
	Measurement			
	Use of Multimeter, soldering of electrical circuits having, discrete	10		
T	components (R, L, C, diode). Use of a voltmeter, Ammeter to			
	measure current and voltage.			
II	Thermal Effect of Current	07		
	Heating effect, Joule's law of heating, Thermo electricity,			
	Thermo electric Power, Peltier effect, Thomsen effect.			
III	Magneto statics	07		
	Magnetism, Coulomb's law, Magnetic moment, Magnetic field			
	of a bar magnet, Magnetic lines of force, Properties of magnetic			
	material.			
IV	Time-varying field	06		
	Faraday's experiments, cause of induced e.m.f., Laws of			
	electromagnetic induction, Lenz's law.			

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- <u>https://learn.sparkfun.com/tutorials/how-to-use-a-</u> <u>multimeter/measuring-voltage</u>
- Magnetic Effects of Current by Priyanka jangid
- https://ncert.nic.in/textbook/pdf/gesc114.pdf
- https://ncert.nic.in/textbook/pdf/leph103.pdf
- Unified Physics B.Sc. I year by R.P. Goyal

Part D: Assessment and Evaluation					
Suggested Continuous Evaluation Methods:					
Maximum Marks: 50	Maximum Marks: 50				
Continuous Comprehen	sive Evaluation (CCE): 2 Internal	and Assignment-10 Marks			
Semester Exam (SE): 40 Marks					
Internal Assessment:	Class Test-02				
Continuous	1 Assignment/Presentation				
Comprehensive Total Marks: 10					
Evaluation (CCE)					
		Total Marks: 50			